
Mol

The Pennylvania State University

Department of Statistics
University Park, Pennsylvania

TECHNICAL REPORTS AND PREPRINTS

Number 76: September 1988

ROBUST DIAGNOSTICS FOR RAINK-BASED INFERENCE

JToseph W. McKean

Western Michigan University

Simon J. Sheather
University of New South Wailes

Thomas P. Hettmansperger*
Pennsylvania State University

DTIC

OWTOMUTON STAYZMEIT A-Ipai I= 88benqa 10 8 105
1 ~ ~ U d~ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _



DEPARTMENT OF STATISTICS

The Pennsylvania State University
University Park, PA 16802 U.S.A.

TECHNICAL REPORTS AND PREPRINTS

Number 76: September 1988

ROBUST DTAGNOSTICS FOR RANK-BASED INFERENCE

Joseph W. McKean

Western Michigan University

Simon J. Sheather

University of New South Wales

Thomas P. Hettmansperger*
Pennsylvania State University

DTIC
SELECTE

OCT 0 4 1988

*Research partially supported bv ONR Contract N00014-80-C0741.

DfI'UlT I TATri Tnr A

Approved f--- piblic releae



-2-

Abstract

Diagnostics based on robust R-estimates of regression coefficients are

developed. These methods are not as sensitive to influential points as least

squares diagnostics. In data sets with several influential points,

diagnostics based on a robust fit have a greater chance of detecting

interesting cases for further inspection. Robust analogues of the internal

and external t statistics, DFFITS, DXX)K, and DFBETAS are developed and

illustrated on two data sets. -

Keys word-s: Linear Models, RobusLness, Regression.
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1. Introduction

A regression model is at best an approximation to the reality of the

situation under study. Regression diagnostics are invaluable tools for

detecting data points at which the model and the data differ greatly (such

points are called outliers) as well as data points which have a large

influence on the model. In the last ten years there has been much interest

in the area of regression diagnostics. A testament to this is that a number

of diagnostics are currently available in all the major statistical computing

packages. Regression diagnostics are discussed in detail in the books by

Cook and Weisberg (1982) and Belsley, Kuth and Welsch (1980) and in the review

articles by Hocking (1983), Chatterjee and Hadi (1986), and Hettmansperger

(1987).

It is well known, however, that a few influential points can spoil the

least squares fit of a linear model. In data sets with several influential

points, some of these points can exert such a strong influence on the least

squares fit that other influential points are masked and, hence, are not

detected by these diagnostic procedures. The data sets discussed in Section

4 are illustrations of this effect. Examination of data sets containing

influential points, based on estimates that are impaired by such points, is a

serious drawback to diagnostics based on least squares. In these

(-ircumstances, the traditional diagnostics suffer a lack of detection power.

Over the last ten years, the area of robust regression has also become a

rapidly expanding field. Some of the major statistical packages now contain

some form of robust regression. Using a robust fitting method reduces the

effect of influential points on the fitted model. However, a number of

authors point out that the exclusive use of robust methods can obscure

important substantive problems with the model which in some situations are

reveal-d by regression diagnostics based on least squares; see Cook (1986)

and Chatterjee and Hadi (1986).

Tn this paper we develop diagnostics basLtJ bii f P-estimates of

regression co uefficients. Similar methods can be used to develop diagnost ics

based on other -laqses of robiist. estimater. These er-; tmates - ,As

sensitive to influential points as least squares and the resulting diagnostics
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appear to be more powerful than the least squares based methods. In data sets

with several influential points, the diagnostics based on the robust fit

therefore have a greater chance of detecting influential points than those

based on least squares. In Section 3, we develop robust analogues of the

internal and external t statistic, DFFITS, DCOOK, and DFBETAS. As Sections 2

and 3 demonstrate, their geometry is quite similar to their least squares

counterparts. The last four techniques measure the impact of an individual

case on the robust fit. In the examples of Section 4, these four techniques

are able to detect some obvious outliers whereas the same techniques based on

least squares are not. The robust diagnostics can thus be used to flag

potential cases of trouble and should serve as quite useful tools in linear

model fitting.

In Appendix A, we present a unified development of some of the more

useful least squares diagnostics. The derivations are based on the mean

shift outliei' model; see Cook and Weisberg (1982, p.20).

2. Notation and R-Estimates

Consider the linear model

Y = al + Xc + e (2.)

where I denotes an nxl vector of ones, Xc is an nx(p-1) centered design matrix

having full column rank, a is an intercept parameter, P is (p-l)xl vector of

parameters, and e is an nxl vector of random errors whose components are

i.i.d. with distribution function F and density f. Letting X [1: Xc ] and b

:(a, ' )', we can write the model as

Y = Xb + e.

Discussions of R-estimates for this linear model can be found in

Hettmansperger and McKean (1977). Briefly, consider Jaeckel's (1972)

dispersion function which is given by

Dd) - =qf (Y __ 'FW " q

where x i is the ith row of Xc, R(ui) denotes the rank of ui among ul, ... ,0



and Ja(i)} is a set of scores which are generated as

a(i) ( -) (2.3)
n+I

where ; is a nondecreasing function defined on (0,1) such that fw(u)du = 0

and fY02(u)du = 1. Examples of such score functions are the Wilcoxon, p(u) =

T-Z(u-2), and the sign scores W(u) = sgn(u- ).

Jaeckel (1972) showed that D is a continuous, convex function of g and

proposed estimating # by § where D(9R) = min D(g ). McKean and

Hettmansperger (1976) proposed testing subvectors of g by using the reduction

in D(A) due to fitting the full and reduced models. Algorithms for obtaining

9R can be found in McKean and Hettmansperger (1978) and Osborne (1985).

Version 6 of MINITAB contains commands which return 9R"

Under mild regularity conditions, found in Heiler and Willers (1979), iR

satisfies

#R + T(X'Xc)-'Xc 'a(R(e)) + o p(1) (2.4)

where a(R(e)) denotes the vector with components a(R(ei)) and 7 is a scale

parameter defined by

= fip(u)(- f'( (u)) )du. (2.5)

f(F- (u))

Discussions of consistent estimates of T based on the residuals Y - X.R c^ar

be found in Koul et al. (1987) and Aubuchon and Hettmansperger (1988). Under

these regularity conditions Xa(R(e)) is approximately N (0,XCX); hence,

is approximately N (#(X,  ' Xc) - ).  (2.6)

Note if Xc = [X Ic 1X2 CI and X c and X2 C are orthogonal, i.e. X cX2 c = 0,

then 9,R and g2R are asymptotically independent. While this does noL imply,

in finite samples, that the R-estimates of are the same in the reduced and



full models, we have found in practice that the estimates do not differ by

very much. For use in Section 4, we will term this approximate orthogonality.

Also, since ranks are invariant to constant shifts, the intercept

parameter cannot be estimated from D(#). If symmetry of the error

distribution seems to be a tenable assumption, then scores satisfying

Y(l-u) = -q(u) (2.7)

are suitable; for instance, both the Wilcoxon and sign scores cited above

satisfy this condition. Then the intercept can be estimated by using a one

sample location R-estimate which corresponds to the chosen score function,

see McKean and Hettmansperger (1978). Let R denote this estimate and let bR

R Under regularity conditions which include symmetry o, the

distribution of the errors, bR is approximately N p(b,a(X' X-').

If symmetry of the error distribution is not tenable then, to avoid its

assumption, we take the intercept to be the median of the distribution

F(y-x'e) and estimate the intcrcept by

c= medtYi-XiR}.

Under the same regularity conditions as cited for (2.4), we have

+ n V a (e) + .o (1) (2.8)c, : + n '_ ( }+ Op(1

where 7 (2f(O)' and a* (ei) = sgn(e i). Estimation of is discussed b

McKean and Schrader (1984). It then follows that,

[ is approximately N p ( ), 2

A RA, (X c ,
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3. R-Diagnostics

3. 1. Internal R-studentized residuals.

Similar to the least squares residuals, the variance of the R-residuals,

eR,i' depend on both the linear model and the underlying variation of the

errors. The internal studentized least squares residuals, see Appendix A,

have proved useful in diagnostic procedures since they correct for both the

model and the underlying variance. The internal R-studentized residuals

defined below, (3.5), are similarly standardized R-residuals.

As discussed in Section 2, let a and #R denote the R-estimates of a and

/. Denote the residuals by eR Y - 1 - X R" In order to standardize

these residuals we need an estimate of the variance-covariance matrix

Cov(eR). From Appendix B, equation (B.9), we have the approximation

oR (Y-la-Xel) - Ja - rHca (3.1)

where a* and a denote the vectors a (e) and a (R(e)) given in the exqpressiu)ns

(2.4) and (2.8). Throughout this paper I refers to first order

approximations as developed in Appendix B. As shown in (B.1) of Appendix B,

an estimate of the variance-covariance matrix of eR is

S 2 {I-K I J-KH (2.2)

where K

2

n-p Ril

and 6 = D(R).

n-p

n-p R "

The estimators $* ,and are dis,,ussed in Scotion 2 and D()is diefinod I

(2.2).



To ,iplete the estimate of the Cov(eR) we need an estimate of o2 . on-e

possibility is to use the least squares estimate o. This is a consistent

estimate provided the errors have finite variance. There are other

possibilities but they involve assumptions on the form of the distribution;

for example, r6 is a consistent estimate provided the errors have a normal

distribution. For robustness, a mildly trimmed or winsorized mean square

error could be used, see Shoemaker and Hettmansperger (1982).

It follows from (3.2) that an estimate of Var(eR, i ) is

s2 0o2(t K~ -Kh (3.3)
SR,i I n aic

where h. x(X xic = Nic( XXc)-ix 'c "

~ 2 02:n- 1
Note that in the least squares case s 2i = (1-h i ) and h i  n + hic the

ith diagonal element of the least squares projection matrix, which is the ith

leverage value. Hence K and K2 can be viewed as corrections due to using the

rank based fitting method. If the error distribution is symmetric (3.3)

reduces to
~2 O2

SR' i = (1-K2h.). (3.4)

We define the internal R-studentized residuals as

rR, i : ~ 0 ~,..n(.)

SR, i

where SR,i is the square root of either (3.3) or (3.4) depending on whether

one assumes an asymmetric or symmetric error distribution, respectively.

As with their least squares counterparts, we think the chief benefit of

the internal R-studentized residuals is their usefulness in diagnostic plots,

such as plots of residuals versus fitted values and q - q plots. These

residuals are corrected for bot.h the design and the underlying variance.

It is interesting to compare expression (3.A) with the estimate of the

variance of the least, squares residual, (12 -hi). The orrection fautor K2

L2
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depends on the score function qp(") and the underlying symmetric error

distribution. If, for example, the error distribution is normal and if we use

normal scores, then i2 converges almost surely to 1. In general, however, w'e

will not wish to specify the error distribution and then K2 provides a natural

adjustment.

3.2. R-estimates for the mean shift outliers model.

The R diagnostics that follow depend on the mean shift outlier

model which is discussed in detail in Appendix A. Briefly, for the ith case,

the mean shift outlier model is

Y = %b + die i + e (3.6)

where d i is an nxl vector of zeroes except for its ith component which is 1.

A formal test that the ith point is an outlier involves testing the

hypotheses H0 : i=O versus HA: Oi0.

Below we obtain an R-estimate of G. and an estimate r(i) of 7,

based on the model (3.6). These estimates will play a key role for the

R-diagnostics that follow.

One way of obtaining an R-estimate of 9i involves fitting this model.

Thi: would be computationally expensive since n such models need to be fit.

Another way would be to consider aligned rank procedures. These procedures

remove the effects of nuisance parameters (in this case b) by considering the

residuals from the reduced model (in this case eR from the reduced model Y :

Xb + e); see Puri and Sen (1985) for a discussion of aligned rank procedures.

It is convenient to use the second form of the mean shift outlier model

(A.3) given by Y = Xb + d.0 i + e, where d, = (I-H)d i , and H is X(X'X)- \
' .

In this :'orm X and d. are orthogonal and McKean (1975) has shown that this
-1L

helps eliminate bias in the estimates. This is the model Cook and Weisberg

(1982) used in obtaining the least squares external t diagnostic. Note that
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the first part of the model Yb * is a vector in the column space of X. Hence

the R-residuals from the fit of this reduced model are still eR.

Our R-estimate of 0i is 9R,i which is a solution of A (Gi) = 0 where

n ^
Adi) d Z a(R(e R-eidi i)). (3.7)Al~)j=1

Thus the problem has been reduced to finding n simple regressions.

Furthermore these regressions are easily obtained. If we view he LHS

of (3.7) as a function of 0 i, it cr.n be shown that it is a decreasing step

function of 0i" The solution follows quickly using a simple linear search

routine. A procedure which works quite well is the Illinois version of

regula falsi similar to the algorithm discussed by McKean and Ryan (1977).

The R-residuals fi'om the fit, of the second form of the mean shift

outlier model (A.3) arc

!2R 2 - 9 .di (3.8)

Define r(i) and T*(i) as the estimates of r and i* based on the residual

vector eR.

Note that if we replace the above rank criterion by the least squares
criterion then we obtain the least squares estimate of ei by using a series

of simple regressions to find a multiple regression; see Draper ard Smith

(1981, p.2 04 ).

3.3. RDFFTT.

Next we consider a statistic that measures the first order

change in the R-fit of the ith case when the ith case is deleted. As in

Ap[pndix B, the first oner terms in the change in the R-fit of" the ith case

when the ith 'axe is deleted is

RDFFITi = R,i - YR(i)

R , i h i . 3 .9 )



Equation (3.9) can be developed as follows: For the ith case, consider the

second formulation of the mean shift outiLe2: model given by iA.3).

Appealing to tne asymptotic orthogonality, YR, i the R-fit of Yi in the

original model (A.1), is the R-fit of the first term on the RHS of model

(A.3) and 0R,idii is the R-fit of the second term on the RH{S of model (A..2).

Hence the R-predicted value of Yi in the mean shift outlier model is, to the

first order, Ri + d which can be expressed as

YR,i + 0R,i ii [YR,i-OR,i(Hi'i + OR,i

: R,i- ,ihil + i R,i"

The term in brackets is, of course, the R-fit of the first term on the

RHS of the first formulation of the mean shift outlier model, namely (b) )f

model (A.2). As noted in Appendix A, when least squares methods are used, the

least squares fit of thi'. term is Y1 S(i). Similar to least squares, the

bracketed term

YR W YR," - 1R, ihil (2.10;

Clearly, in order to be useful, RDFFIT i needs to be assessed relative to

some scale. The following R-diagnostics are formulations of RDFFITS i based rn

appropriate scales.

.1. RDCCOK and RDFFTTS.

RDFFIT is a change in the fitted value; hence, a natural scale for

assessing RDFFIT is a ficted value scale. rt follows from Appendix R, se,

(B.5) and (B.6), that for the R-fit, assuming an asymmetric error

distribut ion,
* 1 *2 + r2

Vasre n a fte + hsa a

Hence, based on a fitted scale assessment, we standardize RDFFT hy
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(var ("R, i ) )[/2

As noted in Appendix A, for least squares diagnostics there is some

discussion on whether to use the original model or the mean shift outlier

model for the estimation of scale. Cook and Weisberg (1982) advocate the

original model. In this case the scale estimate is the same for all n cases.

This allows casewise comparisons involving the diagnostic. Belsley, Kuh, and

Welsch (1980), however, advocate scale estimation based on the mean shift

outlier model. Note that both standardizations correct for the model and the

underlying variation of the errors.

Let r* and T^ denote the estimators of T * and 7 discussed in Section 2.

Our diagnostic in which RDFFIT i is assessed relative to a fitted value scale

with estimates of scale based on the original model is given by

RDFFIT.
(p RIXXXKi) 1/2 = DFIi 2

n i)+h cr

This is an R-analogue of (p DCCOKi)1/2 statistic proposed by Cook and Weisberg

(1982), see (A.9).

Let r*(i) and 7(i) denote the estimates of 7* and r for the mean shift

outlier model as discussed above. Then our diagnostic in which RDFFTT is

assessed relative to a fitted value scale with estimates of scale based on the

mean shift outlier model is given by

RDFFIT iRDFFIi)+ . - /1 (:3.11
S1 (l*2(j* -2(i1/2'

in ic W)

This is an R-analogue of thc- least squares diagnostic DFFITS i proposed by

Bel-sley et, al. (1980); 0-ee (A.10) of Appendix A.

rf t h, ,rror list rihution is assumed to be symmetric, t ht R-d jagrics .I

are, obt;iinPd by rv~placing Var(YR,i ) 1ith

Var(Y ,i ) hi 2

see (B.6 GoF Appe nd i: 1B. Th is felIi in ; eUs tife nel to e~I II mte
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There is disagreement on ;,h:t cutoff values to use for flagging

point of potent ial influienc.e. As Belsley et al. 1980) discuss in some

lhetai 1, DFITS is inversely influenced by sample size. They advocate a

size- udjusted cutoff value of 2.'p n for DFFITS, which would lead to a 2/V'n

cutoff value for (DCGOK)i/2. Cook and Weisberg (1982, p.118) suggest a more

conservative cutoff value of 1. In the examples in Section 4, we will use the

more liberal value, realizing these diagnostics are only flagging potential

influential points that require investigation. As with the two references

cited above, we would never recommend indiscriminant deleting of observations

solely because their diagnostic values exceed the cutoff point. Rather these-

are potential points of influence which should be investigated.

3.5. External tR-statistic.

The above diagnostics RDCOOK and RDFITS, assess the first order

change in RDFFTT relative to the R-fitted scale which is a r-scale, (or i7

and T scale under the assumption of an asymmetric error distribution). This

change in fit, however, is proportional to 0R,i . Hence assessing 9R, i on the

r-scale is consistent with the scale suggested by the approximate distribution

of an R-estimate, see (2.6).

Note, that in the mean shift outlier model the leverage value of the ith

:ase is I. As Huber (1981) showed, a necessary and sufficient condition for

the least squares estimates to be asymptotically normal is that the 1(-verage

values go to zero uniformly. Similarly, this is a sufficient condition for

the asymptotic dis-tribution theory of the R-estimate.s. Therefore the

asymptotic theory f)r' neither least squares nor R-estimates hold for the meat)

shift outlier model. Nevertheless, the external t-statistic, ts(i), (G

relative to its standard error), see (A.8), has proved to be. an effeetive

diagnostic for least squares fit.

In analogy to the external tl1.- statistic, we propose the external

tR-statistic which is given by
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tR(i)= LR, - (3.12)

(i)ITF-

Although this is the standardization suggested by the asymptotic distribution

theory, in light of the above discussion, we do not propose it as a test for

H0 : e=0 versus HA: 6V-0. Instead we propose it as an alternative to the least

squares diagnostic tLs(i). We are still assessing the change RDFFIT on a

r-scale. We further feel that -r is a more rnhust estimate of i than o is of

a and we have found in practice that it appears to be better at flagging

potential points of influence than tLs(i).

3.6. RDFBETAS.

When the diagnostics RDFFITS or RDOOK are large for, say, the ith case,

then we usually want to investigate the impact this case has on the

individual regression coefficients. Thus, we want to consider the

statistic we shall define as

RDFBETAj = b R-Ri

-here b,i is the R-estimate of b in the mean shift model (A.2).

In order to obtain this statistic, first note that if YR is the

R-predictiui, 3f Y in the original mcipl, then the R-estimate of b is the

solution hR to the equation

ThR

that is,

bR (X r'-X'R •  (3.13)

In fact, most modern software obtains bR by first finding YR employi.g a

convenient basis matrix of X; see, for example, Hettmansperger and MehKean

(1983, Section 4).
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Let [ - [Xldi] denote the design matrix for the mean shift outlier

model. Let Ri denote the R-fitted value of this model. Then according to

(3.13) bR(i) is the first p coordinates of the vector,

i (x,) - i

From Section 3.2, (3.10), .Ri .+ i*i Then using the result for the

inverse of a partitioned matrix (see p.27 of Searle (1971)) and the fact that

di = (I-H)di, we obtain after some algebra that

b (i) bR - (X'Xf'I-i0R,i

where is the ith row of [. Hence

RDFBETAi  (XXI- R

To be useful RDFBETAi needs to be measured relative to a scale. Sincj

it is proportional to a difference in fitted values we shall choose a

-scale. As in Section (3.4) if r is estimated by using the mean shift

outlier model. Then the diagnostic, defined for the jth component of

RDFBETAi, is

RDFBETAS.,j = RDFBETAi/(;(i)V(XX c ')j )

Belsley et al. (1980) advocate a size adjusted cutoff value of 2 /,n for the

corresponding least squares diagnnstio.

These diagnostics are straightforward to compute. Consider the diagonal

matrix 'R = diag{OR,1 .... 0R,n). Define (p-1)xn matrix

RDFBETA = [bR-B3R(l) .... bR-bR(n)].

It, then follows

RDFBETA = (X'X,'X)'GX .

Note that each of the n-columns of RDFBVETA is 4imply a least squares fit of a

(Mllumn of G. They can be btained quickly using the QR-subroutines in
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LINPACK; see Dongara et al. (1979,.

4. Examples

The following two examples illustrate the power of the R-diagnostics

in detecting influential points in linear models. The R-estimates were

computed by the algorithm discussed in Hettmansperger and McKean (1983). To

compute the diagnostics we used the LINPACK subroutines SQRDC and SQRSL for

the numerical linear algebra parts, such as leverage values, projections, etc.

The R-estimate of 9i was computed as discussed in Section 3. The parameter 7

was estimated as discussed in Koul et al. (1987) using the value of X = .80.

Example I. The data for this example can be found in Morrison (1983, p.64).

The response is the level of free fatty acid of prepubescent boys while the

independent variables are age, weight, and skin fold thickness. The sample

size is 41. Figure I depicts the residual plot based on the least squares

fit. From this plot there appears to be several outliers. Certainly the

points 12, 22, 26 and 9 are outlying and perhaps the points 8, 10 and 38. In

fact, the first. four of these points probably spoiled the least squares fit,

ohscuring the points 8, 10 and 38. This seems apparent from the residual

plt based on the Wilcoxon fit, Figure 2, where all seven points stand out.

Table I gives the values of the internal t, external t, DFFTTS and

('D(MK) 112, diagnostic statistics for both the least squares and Wilcoxon fit.

Using a cutoff value of 2 for the external t statistics and the suggested

cutoff values of .62 for DFFITS and .31 for (DCOOK)±/2, the least squares

diagnostics flag only points 12 and 22 while the R-diagnostics flag all seven

points. Both R-diagnostics are necessary; for instance RDFFIT and (RDCrOK)I/2

flag point, 8 while the external tR is at 1.84. Conversely the external tR

flags point 26 while the other two do not.

Table 2 displays the RDFBETAS. Using the suggested cutoff value

of .31, these statistics indicate an influential effect on at least one P for

five of the above points and on the two exceptions, points 26 and 22, the

outcome is borderline. Note that. RDFFTT is large for 61 at point 11.
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Although this point was not flagged abc . , it is a point of high leverage;

i.e. h i > 2p/n.

Note that in both residual plots, the low values of the residuals are

bunched together while the higher values are more dispersed; i.e., the

distribution of the residuals appears to be positively skewed. For a final

fit, then, we proceeded to use the bent R-score function given by

3 3 < u

P = 2 u
u-2 O_<u<_5

which is suited for positively skewed error distributions with hea,y right

tails; see McKean and Sievers (1988) for a discussion of these scu ii. , its

residual plot, Figure 3, the outliers stand out more than in the previous fits

and it does appear to be more scattered indicating a better fit. The

regression estimates for all three fits appear in Table 3. They do differ,

especially the estimates of t3" Table 4 displays the diagnostics for the bent

score fit. Note that the above seven points are flagged as well as point 11.

Example 2. The dataset of this example is the stack-loss data presented in

Daniel and Wood (1971, p.60 ). It has been discussed in several articles on

robust methods, for instance, Andrews (1974) and Hettmansperger and McKean

(1977). In the latter article, robust residuals plots are presented for fits

using various R-scores. It appears from these plots that observations 1, 3,

4, and 21 are outlying points.

In Table 5 we present the diagnostic measures for both an R and a least

squares fit, (the R-fit used Wilcoxon scores). The R-diagnostics clearly

indicate that these points need further investigation. RDFFIT exceeds

2(p/n)l/
2 = .87 on all 4 of these points, the exte-nal t exceeds 2.0 on all

but the first point (but even here it is at 1.91), and (RDCXO)K)±/2 exceeds

2/n = .44 on points 1 and 21. From the RDFBETA values, points 1 and 3 had an

impact on P while the remaining two points had an impact on both 6, and fl"

None of the R-diagnostics for the remaining 17 points exceeded the cutoff
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values.

In contrast, for least squares, only observation 21 was flagged by DFFITS

while observations I and 21 were flagged by the least squares external t

statistic. The remraining two were not flagged.

5. Conclusions

Diagnostics are an extremely important part of many data analyses.

Least squares diagnostics have been effective in detecting and identifying

aberrant cases. These methods fit most naturally with least squares based

inference. Currently, there are several approaches to robust inference in the

linear model. The present paper suggests natural diagnostic quantities to be

used in conjunction with robust rank-based inference. The robust diagnostics

appear to have some advantages. In the examples, they were able to flag

cases of potential trouble that were passed over by least squares

diagnostics.

Appendix A.

In this appendix we derive the least squares diagnostic tools (internal

and external t, DFFITS, DCOOK, and DFBETAS) from a common source (the mean

shift outlier model). We also establish some of the results we need in the

derivation of the R-diagnostics.

Consider the linear model,

Y = Yb + e (A.1)

which is defined in Section 2. The mean shift outlier model for the ith data

point is defined by

Y = Yb + d i i + e (A.2)

where d i is a nxl vector of zeroes except its ith component is 1.

The parameters Gi, i = l,...,n, play a key role in the diagnostics.

There are several ways of writing model (A.2). Following Cook arid

Weisberg (1982) and lettingd* (1-H)d i , where H is X(X'X)-'X', the model can

-- -
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be written as

Y = hb + d G. + e. (A.3)
I. -1

Since X and d* are orthogonal, the least squares estimate of 0. is

-1 1

The second equality holds since d* d* 1-h. and d Y =d.l(I-H)Y.

Next we want to connect 9.i with the statistic DFFIT . which is the

difference in the fitted value of Y. at the model (A.1) and when the ith

point is deleted. Let Y LSibe the fitted value of Y. at model (A.1) and let.

Y~s(i) be the fitted value of Y. when the ith point is deleted. Then

DFTITi LS9'i = YL'(i).-

In order to obtain YLS(i), we need niot delete the point and refit since it

follows from Cook and Weisberg (1982, p.33) that

Y LS(i) =Y. - 9.;

hence,

DFTi = LS'i (Y- Oi

-(1-h. )e. + e.

where the middle equality follows from (A.4).

The least squares diagnostics follow from different staiidardizitio n.s )f

DFFIT.i For, the t.-statisties note from (A.4) that,

Var(G.) =. (1/(1hi).

If we standardize DFFTTi by uising the estimate (Y2 of (1 2 based on model

(A.1) and use (A.4) we then get the internal t, statistic given by
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DFFIT i  0 .
_ _ -_ e-S^ (A.6)

i (o//l-hi) o/-f- i  o--F-i

SrLS,i

This is called the internally studentized residual; see Cook and Weisberg

(1982, p.18).

Next suppose we standardize DFFIT i by the estimate s
2 (i) of 2 based on

the mean shift outlier model (A.2). As derived in Cook and Weisberg (1982,

p.20 )

^2 ^2
(n-p-1)G e-i / 1-hii )

s(i) =- - n-p-2 (A.7)

The corresponding standadization of DFFIT i is,

DFFITi i 8)

hii (s(i)/VtCh ii) s(i)/%/Tiii

t Ls(i)

This is the externally studentized residual; see Cook and Weisberg

(1982, p.20 ). This is also the t-stitistic for testing H0 : 0 i 0 versus

HA: PO . in model A.2.

The above standardizations of DFFTT i are consequences of considering it

in terms of 0 i . Suppose instead we standardize it in terms of fitted values.

Note that

Var(Y i) :o
2 hii.

If we standardize DFFIT i by using o2 as our estimate of o we get

DFFIT. OA/h

ri (A.9)

L-s, /l-h i i
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- .4p DCOOK.

These equalities follow from (A.4) and (A.6). See Cook and Weisberg

(1982, p.117).

If on the other hand, we standardize it by using s2 (i) as our estimate

of (1 we get

DFFIT. .Vh11  (A. 10)
s(i) ii 

A

DFFITS..

This qtatistic was proposed by Belsley et al. (1980).

Before considering DFBETA, for Section 3 we need the following result.

Under the mean shift outlier model (A.2), it follows immediately that the

predicted value of the ith observation is Yi" Hence under this model we have

i =x LSi +

where (b)S,i is the least squares estimate of the first term on the RHS of

(A.2). Since 0i  - Y LS(i) we have that

Y LS (\b L-9

Thus YLS(i) is also the least squares estimate of the first term on the RHS

of model (A.2).

When DFFITS is large for, say the ith point, usually we want I o

investigate its impact on the individual coorxdinates. Consider the diag(onal

diagO1 nG Let b_.( i ) denoter the ,-st imate of b T.hon the i h

point is deleted. Then the (p-i)xn matrix of changes in the coordinates is

gi ven b).

It follows from Belsley et al. (1220, p.12) that

DFFWTA = (X'X)-X'G.
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These can be obtained quickly using the QR-subroutines in LINPACK.

As with DFFITi, we can standardize DFBETA in several ways. The one we

shall note here is to use s(i) to estimate o. This leads to

-- b (i_) ( DFBETA1)FBqLi'J s(i)lX , X)- s(i)J(X, w -I

which a diagnostic proposed by Belsley et al. (1980, p.13).

Appendix B

In this appendix, we develop the approximations up to terms of order n -

for the variance-covariance matrices Cov(eR) and Cov(yR). We will

concentrate on the case of asynmmetric error distributions and state the

results in the symmetric case. We will use the notation Hc = Pxc

Xc(XX) Xc and J = P n- (1 I') along with hic the ith diagonal element

of Hc . Then the leverage of the ith case is hi -n - 1 + hic. The main

results are

Cov(eR) '- UI-K J-K2 Hc  (B.1)

where K = (r */) (26* / *-1) (B.2)

2
K2 = (-r/ oj)2 (26/ - -I

6 = E(eisgn ei)

6= E[eia(F(e i )) ]

a is the error variance and r, r defined in Section 2.

Hence,

Var eR,i  "j (1-K n- -K2 hi ). (B.3)

In the case of a symmetric error distribution,

Var eR, i I (1-K2 hi). (B.4)
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Recall Cook and Weisberg (1982, p.11), that in the least squares case,

Var eLs,i = 2 (1-hi) so that K and K2 are correction factors due to using

the rank score fitting algorithm.

Likewise

Cov(YR) *2j + r2H (B.5)

VaYR -n-* 2 + hi 2

while in the symmetric case,

Var YRi -hi (B.6)

Before giving a sketch of the derivations of these formulas, we discuss the

estimation of the parameters appearing above. Natural estimates of 6 and 6

are

n--n-p Ei~leRii_ (R.7)

i -"

n-p iEleia(R(ei
))

np D(R), (R 8)

where D(g) is defined in (2.2). Estimates of * and are referenced in

Section 2.

We now outline an approximation for Cov(eR), the variance-covariance

matrix of eR, the vector of residuals. Using (2.4) and (2.8),

I Y - I(a+r*n-11 a*) - X (P+-r(X,)Xa)

where a a(R(e)) and a*' (sgn e,... ,sgn en).

Then

tR-e - r*Ja* - rH a.

Now Fa " 0 "Ea and hence
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Cov(eR) - Ee _e - 2 e aJ- 27e a'H

+ *2Ja*a*'J + 2r*rJa*a'Hc

+ r2Hca a'H.

Note that Ea a' l-- I Ea*a*. Further Eea*' " I, Ee a' "61 -And Eaa'

cI for a constant c. Now using J'J = J, HHc = He, J'H c = 0 we have

(2 *226 _r2(26

Cov(e !2R = r * '- - 1 )H,.

Then (B.1), (B.2) and (P.3) follow immediately. The formula (B.5)

follows in a similar fashion from Y !cc + XU + -*Ja* + 7H.. Similarly f? r

formulas (B.4) and (B.6).
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Table 1. Diagnostics for R (Wilcoxon Scores)
and Least Squares fit of Example 1.

Case Int(R) Ext(R) RDFFITS RDCOOK Int(LS) Ext(LS) DFFITS DCOOK
1 0.72 0.80 0.20 0.10 0.49 0.49 0.12 0.06
2 -0.79 -1.00 -0.34 -0.17 -1.19 -1.20 -0.40 -0.20
3 -0.16 -0.19 -0.05 -0.03 -0.53 -0.53 -0.15 -0.07
4 -0.64 -0.84 -0.19 -0.10 -0.96 -0.95 -0.22 -0.11

5 0.69 0.76 0.28 0.14 0.42 0.42 0.15 0.08

6 0.12 0.13 0.03 0.02 -0.21 -0.21 -0.05 0.02

7 -0.72 -0.92 -0.32 -0.17 -1.07 -1.07 -0.37 -0.18

8 1.51 1.84 0.67 0.32 1.16 1.17 0.43 0.21
9 2.07 2.69 0.56 0.26 1.74 1.79 0.38 0.18

10 1.54 1.94 0.62 0.29 1.12 1.13 0.36 0.18

11 0.93 1.05 0.F.3 0.25 0.56 0.56 0.30 0.15

12 3.18 4.13 1.03 0.47 2.84 3.17 0.79 0.35

13 -0.56 -0.65 -0.27 -0.14 -0.77 -0.77 -0.35 -0.18

14 0.0O -0.00 -0O0 -0.00 -0.34 -0.34 -0.09 -0.04
1 0.21 0.28 0.08 0.04 -0.12 -0.12 -0.04 -0.02

16 0.66 0.78 0.18 0.09 0.31 0.31 0.07 0.04

17 -0.03 -0.11 -0.02 -0.01 -0.34 -0.34 -0.07 -0.03

18 -0.72 -0.91 -0.26 -0.14 -1.12 -1.13 -0.32 -0.16

19 -0.43 -0.56 -0.24 -0.13 -0.83 -0.82 -0.36 -0.18
20 -0.66 -0.86 -0.30 -0.16 -1.00 -1.00 -0.35 -0.17

21 -0.60 -0.80 -0.13 -0.07 -0.90 -0.89 -0.15 -0.07

22 2.43 2.80 0.61 0.30 2.26 2.40 0.53 0.25

23 0.16 0.19 0.03 0.02 -0.11 -0.10 -0.02 -0.01

24 -0.72 -0.90 -0.22 -0.12 -1.09 -1.09 -0.27 -0.13

25 -0.32 -0.39 -0.14 -0.07 -0.49 -0.49 -0.18 -0.09

26 1.73 2.06 0.43 0.21 1.51 1.53 0.32 0.16
27 -0.76 -0.96 -C 19 -0.10 -1.09 -1.10 -0.21 -0.11

28 0.47 0.58 0.14 0.07 0.24 0.24 0.06 0.03

29 1.00 1.27 0.39 0.19 0.76 0.75 0.23 0.12
30 -0.51 -0.59 -0.18 -0.09 -0.71 -0.70 -0.22 -0.11

31 -0.78 -0.97 -0.20 -0.10 -1.05 -1.05 -0.22 -0.11

32 -0.19 -0.24 -0.07 -0.04 -0.36 -0.36 -0.11 -0.06

33 0.84 1.02 0.24 0.12 0.57 0.57 0.14 0.07

34 -0.58 -0.68 -0.15 -0.08 -0.81 -0.81 -0.18 -0.09
35 -0.69 -0.86 -0.23 -0.12 -0.98 -0.97 -0.26 -0.13
36 -0.02 -0.13 -0.13 -0.07 0.18 0.18 0.19 0.09

37 0.67 0.76 0.20 0.10 0.49 0.49 0.13 0.06
38 1.64 1.95 0.82 0.40 1.27 1.29 0.54 0.27

39 0.89 1.01 0.41 0.21 0.73 0.73 0.30 0.15
40 -0.30 -0.41 -0.21 -0.11 -0.51 -0.50 -0.29 -0.15

41 0.07 0.10 0.04 0.02 -0.09 -0.08 -0.03 -0.02



Table 2. RDFBETAS (Wilcoxon Scores) for Example 1.

Case Incep. Age Weight Skinfold
1 0.03 -0.08 -0.02 0.11

2 -0.09 0.20 -0.25 0.25

3 -0.04 0.02 0.02 -0.00

4 -0.13 0.07 0.06 -0.06

5 0.16 -0.11 -0.09 0.17

6 0.02 -0.02 0.00 0 00

7 -0.16 0.27 -0.20 0.09

8 0.43 -0.00 -0.49 0.21

9 0.34 -0.14 -0.08 -0.17
10 0.47 -0.17 -0.19 -0.15

11 0.14 -0.44 0.49 -0.27
12 0.83 -0.48 -0.15 -0.18
13 -0.09 -0.01 0.20 -0.26

14 -0.00 0.00 0.00 -0.00
15 0.06 -0.02 -0.05 0.03

16 0.06 -0.07 0.09 -0.13

17 -0.01 -0.00 0.01 -0.00
18 -0.09 0.09 -0.11 0.20

19 -0.02 0.13 -0.21 0.19

20 -0.10 -0.11 0.26 -0.09

21 -0.04 0.00 0.02 0.00
22 -0.16 0.04 0.05 0.29

23 0.01 -0.01 0.01 0.01

24 -0.04 0.07 -0.12 0.17
25 0.01 0.06 -0.07 -0.05

26 -0.06 -0.11 0.25 -0.06
27 -0.02 -0.02 0.00 0.08

28 -0.08 0.05 0.05 -0.04
29 -0.24 0.25 0.02 -0.14
30 0.04 -0.11 0.13 -0.12

31 0.08 -0.12 0.02 0.03

32 0.04 -0.01 -0.04 0.00
33 -0.06 0.16 -0.11 0.00
34 0.07 -0.10 0.05 -0.02

35 0.04 -0.16 0.13 -3.01
36 0.06 -0.01 -0.01 -0.10

37 -0.14 0.09 0.05 -0.01
38 -0.19 0.32 0.08 -0.57
39 -0.34 0.28 0.07 -0.07

40 0.12 -0.22 0.14 -0.05

41 -0.03 0.02 0.01 -0.01



Table 3 Fits for Example 1,
(standard error in parentheses).

Fit Incep. Age Weight SkinFold Scale & or
Least Squares 1.70 (.327) -.0021 (.003) -.0152 (.005) .2045 (.166) .215
R-Wilcoxon 1.49 (.273) -.0011 (.003) -.0154 (.004) .2739 (.137) .178

R-Bent Score 1.43 (.247) -.0009 (.002) -.0152 (.004) .3079 (.124) .159



Table 4. Diagnostics for R (Bent Scores)
for Example 1.

Case Int(R) Ext(R) RDFFITS RDCOOK

1 0.67 1.07 0.27 0.14

2 -0.77 -0.97 -0.33 -0.17

3 -0.14 -0.13 -0.04 -0.02

4 -0.64 -0.77 -0.17 -0.09

5 0.64 0.97 0.35 0.18

6 0.11 0.32 0.07 0.04

7 -0.72 -0.94 -0.32 -0.16

8 1.53 2.16 0.79 0.38

9 2.09 3.14 0.66 0.30

10 1.58 2.57 0.82 0.35

11 0.89 1.13 0.61 0.24

12 3.20 5.20 1.29 0.53

13 -0.61 -0.71 -0.33 -0.17

14 0.01 0.18 0.05 0.02

15 0.22 0.46 0.13 0.07

16 0.67 1.07 0.25 0.13

17 -0.03 0.13 0.03 0.01

18 -0.68 -0.88 -0.25 -0.13

19 -0.41 -0.52 -0.23 -0.12

20 -0.63 -0.80 -0.28 -0.15

21 -0.61 -0.73 -0.12 -0.06

22 2.35 3.30 0.72 0.34

23 0.13 0.34 0.06 0.03

24 -0.71 -0.89 -0.22 -0.12

25 -0.41 -0.52 -0.19 -0.09

26 1.69 2.43 0.51 0.24

27 -0.75 -0.92 -0.18 -0.09

28 0.43 0.80 0.19 0.09

29 0.97 1.48 0.46 0.21

30 -0.57 -0.64 -0.20 -0.11

31 -0.80 -0.95 -0.20 -0.11

32 -0.27 -0.34 -0.10 -0.05

33 0.83 1.35 0.32 0.15

34 -0.61 -0.71 -0.16 -0.09

35 -0.69 -0.85 -0.22 -0.12

36 -0.35 -0.39 -0.39 -0.19

37 0.61 1.09 0.28 0.13

38 1.67 2.46 1.04 0.46

39 0.81 1.39 0.57 0.27

40 -0.32 -0.36 -0.19 -0.09

41 0.00 0.21 0.08 0.04



Table 5. Diagnostics for R (Wilcoxon Scores)
and Least Squares fit of Example .2.

Case Int(R) Ext(R) RDFFITS RDCOOK Int(LS) Ext(LS) DFFITS DCOOK

1 1.42 1.93 1.28 0.45 1.19 1.21 0.79 0.39

2 -0.50 -0.69 -0.48 -0.23 -0.72 -0.71 -0.48 -0.24

3 1.61 2.13 1.02 0.37 1.55 1.62 0.74 0.36

4 2.22 2.79 1.15 0.40 1.88 2.05 0.79 0.36

5 -0.45 -0.41 -0.12 -0.05 -0.54 -0.53 -0.12 -0.06
6 -0.75 -0.79 -0.24 -0.11 -0.97 -0.96 -0.28 -0.14

7 -0.55 -0.61 -0.32 -0.15 -0.83 -0.83 -0.44 -0.22

8 -0.20 -0.19 -0.10 -0.05 -0.48 -0.47 -0.25 -0.13

9 -0.71 -0.77 -0.31 -0.14 -1.05 -1.05 -0.42 -0.21

10 0.21 0.18 0.09 0.05 0.44 0.43 0.21 0.11
11 0.55 0.55 0.25 0.12 0.88 0.88 0.38 0.19

12 0.51 0.70 0.38 0.17 0.97 0.97 0.51 0.26
13 -0.72 -0.87 -0.38 -0.16 -0.48 -0.47 -0.20 -0.10
14 -0.28 -0.32 -0.16 -0.07 -0.02 -0.02 -0.01 -0.00

15 0.71 0.84 0.41 0.19 0.81 0.80 0.39 0.20

16 0.24 0.41 0.15 0.08 0.30 0.29 0.11 0.06

17 -0.33 -0.31 -0.26 -0.12 -0.61 -0.60 -0.50 -0.26

18 0.00 0.00 0.00 0.00 -0.15 -0.15 -0.07 -0.03

19 0.07 0.05 0.03 0.01 -0.20 -0.20 -0.09 -0.05

20 0.52 0.47 0.16 0.07 0.45 0.44 0.13 0.07

21 -3.15 -2.94 -1.92 -0.83 -2.64 -3.33 -2.10 -0.83



Figure 1. Residual plot for LS fit of Example 1
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Figure 2. Residual plot for Wilcoxon fit of Example 1
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Figure 3. Residual plot for Bent Score fit of Example 1
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Linear Models, Rohustness, Resression.
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Diagnostics based on robust R-estimates of re ression coefficients are
developed. These methods are not as sensitive to influential points as
least squares diagnostics In data sets with several influential points,
diagnostics based on a robust fit have a greater chance of detectinc:
interesting cases for further in.spection. Robust ana losZues 0 the internalI

and external t statistics, DFFITS, DCOOK, and DFB-T.\S are developed ind
illustrated on two data sets.

DD ... 1473 02' .OV 55 'S .. T n s f
I'l'I ssi 'e


